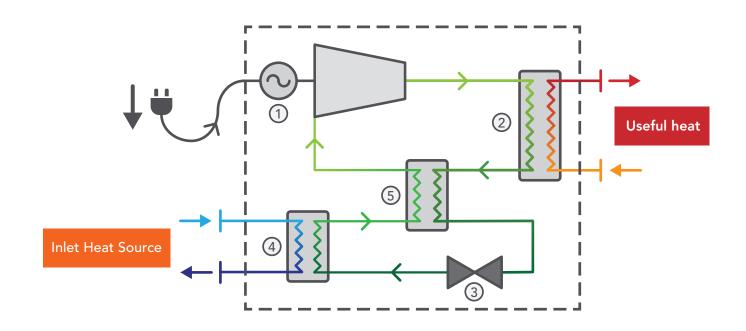
Product description

If there is a heating requirement at a temperature above 100 °C, the Rank® HP1 machine can provide up to 120 kWt heating capacity.

Rank® HP1 is a high-temperature heat pump based on vapor compression technology, which uses low-temperature heat sources (above 60°C) and has high energy performance values, COP of 4.

What is it for?

The Rank® HP equipment allows the production of useful heat at a higher temperature through the use of a low-temperature heat source. For this, they consume electrical energy but efficiently.


A Rank® machine for every need

Whatever your need is, there is a Rank® machine that can be adapted to it through a variety of products that cover a wide range of power.

Page 1-4

How does it work?

1 Compr	essor	The compressor suctions the working fluid and increases its pressure and temperature.
2 Conde	nser	The working fluid condenses, releasing heat at a high temperature (useful heat).
3 Expans	sion valve	The pressure of the working fluid is reduced to the evaporating condition.
4 Evapor	rator	The low temperature heat source is exchanged in the evaporator.
5 IHX		The internal heat exchanger (IHX), or liquid-to-suction heat exchanger (LSHX), is used to
		increase the energy performance of the system

Energy and economic savings

The Rank® HP equipment has associated important energy and economic savings. This is because of the high values of COP they present.

A value of COP of 4 indicates that to generate 4 kWt of useful heat at high temperatures, only 1 kWe of electrical consumption is required. Obviously, it is a heat production much more efficient than an electrical resistance.

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer our customers the following advantages and benefits.

Rank® low-rpm compressor

Operation at low revolutions reduces the noise level, lengthens the service life, and improves reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Magnetic transmission

Magnetic transmission to ensure tightness and to reduce the possibility of leakage.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Internet Of Things

Real-time data transmission via the internet allows predictive maintenance by server data analysis, online supervision (PC, mobile phone, tablet, etc.), and remote working parameters.

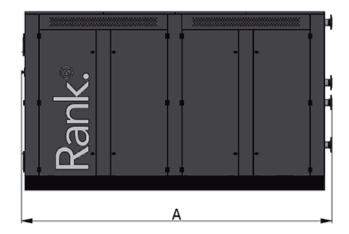
Safety

It complies with all safety regulations and minimises the risk of accidents.

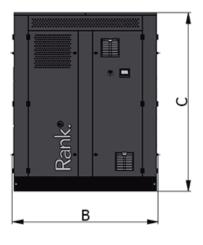


Rank® service

Real-time remote monitoring and predictive control of the machines and automatically generated reports.


- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010


Technical Data

			Heat transfer fluid	Water	-
			Inlet temperature	60-100	°C
100°C			Outlet temperature	40-80	°C
: n i		Inlet Heat source	Volumetric flow rate	6	m³/h
60°C		iniet Heat source	Thermal power	50-90	kWt
			Connections diameter	DN80 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	20	L
	>	Electricity	Power	15-30	kWe
			Voltage	3 x 400	V
			Frequency	50/60	Hz
			Intensity	54	А
	<	Useful heat	Heat transfer fluid	Water	-
			Inlet temperature	80-120	°C
140°C - 🗋			Outlet temperature	100-140	°C
			Volumetric flow rate	6	m³/h
:JU			Thermal power	60-120	kWt
100°C			Connections diameter	DN65 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	15	L
			Data Connection	RJ45	-

Dimensions

A = 3 350 mm B = 1 550 mm C = 2 200 mm Weight 5 500 kg

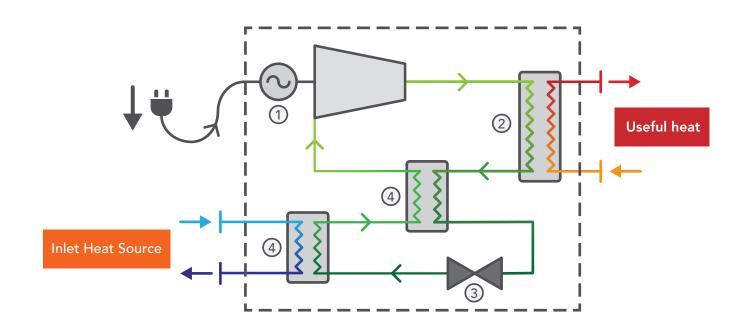
Product description

If there is a heating requirement at a temperature above 100 °C, the Rank® HP2 machine can provide up to 240 kWt heating capacity.

Rank® HP2 is a high-temperature heat pump based on vapor compression technology, which uses low-temperature heat sources (above 60°C) and has high energy performance values, COP of 4.

What is it for?

The Rank® HP equipment allows the production of useful heat at a higher temperature through the use of a low-temperature heat source. For this, they consume electrical energy but efficiently.


A Rank® machine for every need

Whatever your need is, there is a Rank® machine that can be adapted to it through a variety of products that cover a wide range of power.

Page 1-4

How does it work?

	Compressor	The compressor suctions the working fluid and increases its pressure and temperature.
2	Condenser	The working fluid condenses, releasing heat at a high temperature (useful heat).
3	Expansion valve	The pressure of the working fluid is reduced to the evaporating condition.
4	Evaporator	The low temperature heat source is exchanged in the evaporator.
5 1	IHX	The internal heat exchanger (IHX), or liquid-to-suction heat exchanger (LSHX), is used to
		increase the energy performance of the system

Energy and economic savings

The Rank® HP equipment has associated important energy and economic savings. This is because of the high values of COP they present.

A value of COP of 4 indicates that to generate 4 kWt of useful heat at high temperatures, only 1 kWe of electrical consumption is required. Obviously, it is a heat production much more efficient than an electrical resistance.

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer our customers the following advantages and benefits.

Rank® low-rpm compressor

Operation at low revolutions reduces the noise level, lengthens the service life, and improves reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Magnetic transmission

Magnetic transmission to ensure tightness and to reduce the possibility of leakage.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Internet Of Things

Real-time data transmission via the internet allows predictive maintenance by server data analysis, online supervision (PC, mobile phone, tablet, etc.), and remote working parameters.

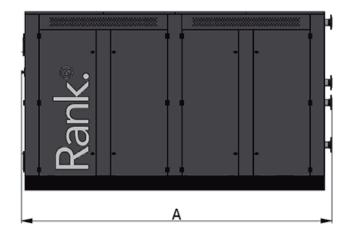
Safety

It complies with all safety regulations and minimises the risk of accidents.

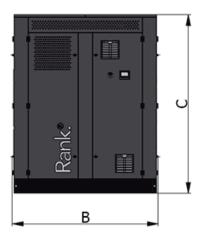


Rank® service

Real-time remote monitoring and predictive control of the machines and automatically generated reports.


- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010


Technical Data

			Heat transfer fluid	Water	-
		Inlet Heat source	Inlet temperature	60-100	°C
100°C -			Outlet temperature	40-80	°C
: 11			Volumetric flow rate	12	m³/h
60°C		met neat source	Thermal power	90-180	kWt
			Connections diameter	DN100 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	50	L
		Electricity	Power	30-60	kWe
			Voltage	3 x 400	V
			Frequency	50/60	Hz
•			Intensity	122	А
	<	Useful heat	Heat transfer fluid	Water	-
			Inlet temperature	80-120	°C
140°C -			Outlet temperature	100-140	°C
			Volumetric flow rate	12	m³/h
:)][Thermal power	120-240	kWt
100°C 🕐			Connections diameter	DN100 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	50	L
			Data Connection	RJ45	-

Dimensions

Rank ORC, s.l. Plaza la Paz, 2 12600 La Vall d'Uixó Castelló, Spain Tel. +34 964 696 859 sales@rank-orc.com www.rank-orc.com

A = 4 850 mm B = 2 050 mm C = 2 500 mm Weight 6 500 kg

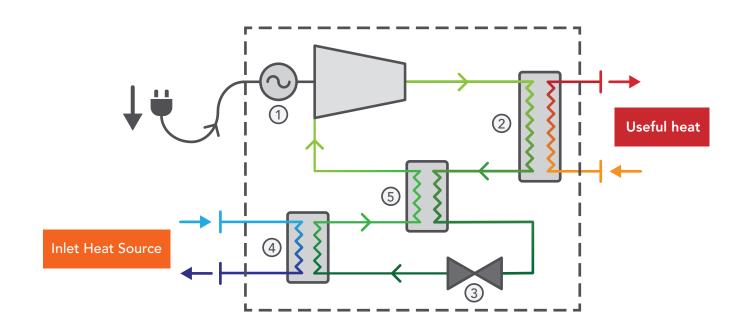
Product description

If there is a heating requirement at a temperature above 100 °C, the Rank® HP3 machine can provide up to 500 kWt heating capacity.

Rank® HP3 is a high-temperature heat pump based on vapor compression technology, which uses low-temperature heat sources (above 60°C) and has high energy performance values, COP of 4.

What is it for?

The Rank® HP equipment allows the production of useful heat at a higher temperature through the use of a low-temperature heat source. For this, they consume electrical energy but efficiently.


A Rank® machine for every need

Whatever your need is, there is a Rank® machine that can be adapted to it through a variety of products that cover a wide range of power.

Page 1-4

How does it work?

1 Compressor	The compressor suctions the working fluid and increases its pressure and temperature.
2 Condenser	The working fluid condenses, releasing heat at a high temperature (useful heat).
③ Expansion valve	The pressure of the working fluid is reduced to the evaporating condition.
4 Evaporator	The low temperature heat source is exchanged in the evaporator.
5 IHX	The intermediate heat exchanger (IHX), or liquid-to-suction heat exchanger (LSHX), is
	used to increase the energy performance of the system

Energy and economic savings

The Rank® HP equipment has associated important energy and economic savings. This is because of the high values of COP they present.

A value of COP of 4 indicates that to generate 4 kWt of useful heat at high temperatures, only 1 kWe of electrical consumption is required. Obviously, it is a heat production much more efficient than an electrical resistance.

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer our customers the following advantages and benefits.

Rank® low-rpm compressor

Operation at low revolutions reduces the noise level, lengthens the service life, and improves reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Magnetic transmission

Magnetic transmission to ensure tightness and to reduce the possibility of leakage.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Internet Of Things

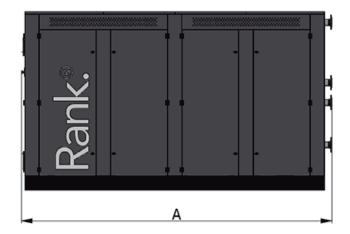
Real-time data transmission via the internet allows predictive maintenance by server data analysis, online supervision (PC, mobile phone, tablet, etc.), and remote working parameters.

Safety

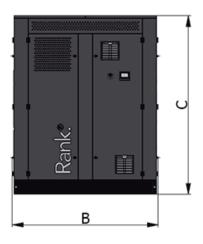
It complies with all safety regulations and minimises the risk of accidents.

Rank® service

Real-time remote monitoring and predictive control of the machines and automatically generated reports.


- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010


Technical Data

			Heat transfer fluid	Water	-
			Inlet temperature	60-100	°C
100°C			Outlet temperature	40-80	°C
: 1		Inlet Heat source	Volumetric flow rate	22	m³/h
60°C		iniet neat source	Thermal power	190-380	kWt
			Connections diameter	DN150 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	120	L
	>	Electricity	Power	60-120	kWe
			Voltage	3 x 400	V
			Frequency	50/60	Hz
			Intensity	220	А
	<	Useful heat	Heat transfer fluid	Water	-
			Inlet temperature	80-120	°C
140°C -			Outlet temperature	100-140	°C
			Volumetric flow rate	22	m³/h
:)((Thermal power	250-500	kWt
100°C			Connections diameter	DN150 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	120	L
			Data Connection	RJ45	_

Dimensions

Rank ORC, s.l. Plaza la Paz, 2 12600 La Vall d'Uixó Castelló, Spain Tel. +34 964 696 859 sales@rank-orc.com www.rank-orc.com

A = 5 800 mm B = 2 250 mm C = 2 500 mm Weight 8 000 kg

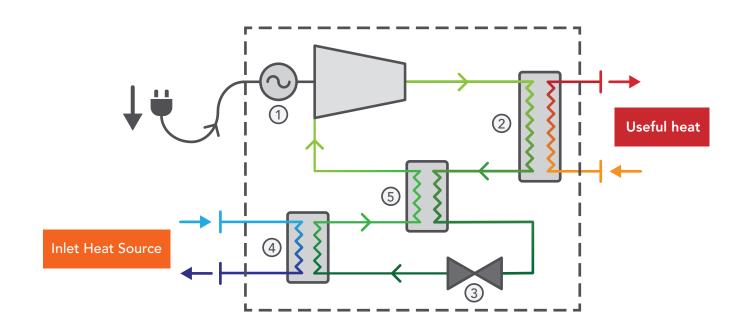
Product description

If there is a heating requirement at a temperature above 100 °C, the Rank® HP4 machine can provide up to 2 000 kWt heating capacity.

Rank® HP4 is a high-temperature heat pump based on vapor compression technology, which uses low-temperature heat sources (above 60 °C) and has high energy performance values, COP of 4.

What is it for?

The Rank® HP equipment allows the production of useful heat at a higher temperature through the use of a low-temperature heat source. For this, they consume electrical energy but efficiently.



A Rank® machine for every need

Whatever your need is, there is a Rank® machine that can be adapted to it through a variety of products that cover a wide range of power.

How does it work?

1 Compressor	The compressor suctions the working fluid and increases its pressure and temperature.
2 Condenser	The working fluid condenses, releasing heat at a high temperature (useful heat).
③ Expansion valve	The pressure of the working fluid is reduced to the evaporating condition.
4 Evaporator	The low temperature heat source is exchanged in the evaporator.
5 IHX	The intermediate heat exchanger (IHX), or liquid-to-suction heat exchanger (LSHX), is
	used to increase the energy performance of the system

Energy and economic savings

The Rank® HP equipment has associated important energy and economic savings. This is because of the high values of COP they present.

A value of COP of 4 indicates that to generate 4 kWt of useful heat at high temperatures, only 1 kWe of electrical consumption is required. Obviously, it is a heat production much more efficient than an electrical resistance.

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer our customers the following advantages and benefits.

Rank® low-rpm compressor

Operation at low revolutions reduces the noise level, lengthens the service life, and improves reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Magnetic transmission

Magnetic transmission to ensure tightness and to reduce the possibility of leakage.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Internet Of Things

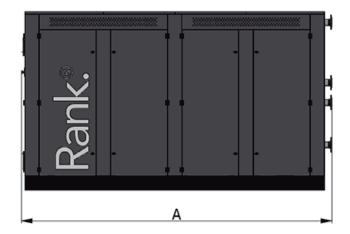
Real-time data transmission via the internet allows predictive maintenance by server data analysis, online supervision (PC, mobile phone, tablet, etc.), and remote working parameters.

Safety

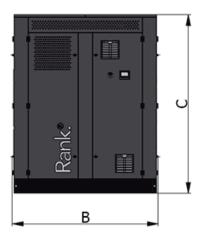
It complies with all safety regulations and minimises the risk of accidents.

Rank® service

Real-time remote monitoring and predictive control of the machines and automatically generated reports.


- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010


Technical Data

			Heat transfer fluid	Water	-
		Inlet Heat source	Inlet temperature	60-100	°C
100°C -			Outlet temperature	40-80	°C
: n			Volumetric flow rate	88	m³/h
60°C		iniet neat source	Thermal power	720-1520	kWt
			Connections diameter	DN150 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	500	L
	>		Power	240-480	kWe
			Voltage	3 x 400	V
		Electricity	Frequency	50/60	Hz
			Intensity	880	А
	<	Useful heat	Heat transfer fluid	Water	-
			Inlet temperature	80-120	°C
140°C •			Outlet temperature	100-140	°C
			Volumetric flow rate	88	m³/h
:)((Thermal power	1 000-2 000	kWt
100°C			Connections diameter	DN150 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	500	L
			Data Connection	RJ45	_

Dimensions

Rank ORC, s.l. Plaza la Paz, 2 12600 La Vall d'Uixó Castelló, Spain Tel. +34 964 696 859 sales@rank-orc.com www.rank-orc.com

A = 5 800 mm B = 2 250 mm C = 2 500 mm Weight 8 000 kg