Rank® MT2

Product description

The Rank® MT2 machine generates clean electricity up to 45 kWe, taking advantage of heat sources below 150 °C.

Besides having excellent electrical performance, the heat produced in the condenser can be used at temperatures up to 50 °C. This heat is available for several applications with thermal needs below 300 kWt.

A Rank® machine for every need

Whatever your need is, we have a Rank® machine that can be adapted to it, through a variety of products that cover a wide range of thermal and power applications.

What is Rank®?

The Rank® equipment allows electrical energy and useful heat production using a low-temperature heat source, with economic and environmental benefits.

Rank®MT2

Applications

Among the main applications of the Rank® ORC machines, we highlight the waste heat recovery and the use of renewable heat sources, with a special interest in cogeneration and trigeneration systems.

Heat sources

Industrial Waste Heat

Engines

Biomass

Solar CHP

Waste

Geothermal

Heat sinks

Cold Production

Heating

Industrial Processes

Drying

How does it work?

1 Evaporator A heat exchanger that provides heat to the high-pressure working fluid and passes from subcooled liquid to superheated vapor (in the form of water or thermal oil).

2 Turbine The expansion of the superheated vapor is used to generate clean electricity.

3 Regenerator To increase the efficiency of the system, the expanded working fluid is used to preheat the high-pressure liquid at the inlet of the evaporator.

4 Condenser It produces useful heat (in the form of water) from the condensation of the working fluid at low pressure.

5 Pump The pressure of the working fluid is increased, and the ORC cycle is completed.

Rank® MT2

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer the following advantages and benefits to our customers.

Rank® low-rpm turbine

Operation at low revolutions reduces the noise level, lengthens the service life and improves the reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Magnetic transmission

Magnetic transmission to ensure the tightness and to reduce the possibility of leakage.

Rank® easy-connect

Electronics-free connection to the electricity grid at the required electrical quality conditions.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Safety

It complies with all safety regulations and minimises the risk of accidents.

Rank® service

Real-time remote monitoring and predictive control of the machines, and automatically generated reports.

Safety Regulations and Standards

- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive
- ENA ER G59/3

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010

Rank® MT2

Technical Data

		Heat source	Heat transfer fluid *	Water	-
			Inlet temperature	120-150	°C
			Outlet temperature	110-140	°C
			Volumetric flow rate	37	m³/h
			Thermal power	300-400	kWt
			Connections diameter	DN100 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	50	L
* / /		Useful heat	Heat transfer fluid	Water	-
			Inlet temperature	20-40	°C
			Outlet temperature	30-50	°C
			Volumetric flow rate	30	m^3/h
			Thermal power	200-300	kWt
			Connections diameter	DN100 PN16	-
			Pressure drop	125	kPa
			Heat transfer fluid inner volume	50	L
		Electricity	Gross power	30-45	kWe
			Net power	25-40	kWe
	>		Voltage	3 x 400	V
			Frequency	50/60	Hz
			Intensity	64	Α
			Data Connection	RJ45	-
Container transport (optional)			HC 20'		
				110 /1	• 1 1 1

^{*} The heat transfer fluid can be water, steam, or thermal oil

HC (high cube)

Dimensions

A = 4 850 mm B = 2 050 mm C = 2 400 mm Weight 6 500 kg

Rank ORC, s.l.
Plaza la Paz, 2
12600 La Vall d'Uixó
Castelló, Spain
Tel. +34 964 696 859
sales@rank-orc.com
www.rank-orc.com

Although our staff has made every effort possible to ensure the most accurate data and close to the final solution, these should be considered as indicative and not binding.