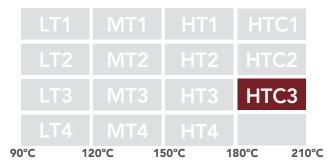
Product description


Rank® HTC3 machine is specially designed for cogeneration applications with high-temperature thermal needs, and they can produce useful heat as hot water at 80°C.

In addition, by using heat at temperatures between 180 °C and 210 °C, this high-efficiency machine can produce 145 kWe

A Rank® machine for every need

Whatever your need is, we have a Rank® machine that can be adapted to it, through a variety of products that cover a wide range of thermal and power applications.

What is Rank®?

The Rank® equipment allows electrical energy and useful heat production using a low-temperature heat source, with economic and environmental benefits.

Applications

Among the main applications of the Rank® ORC machines, we highlight the waste heat recovery and the use of renewable heat sources, with a special interest in cogeneration and trigeneration systems.

Heat sources

Industrial Waste Heat

Engines

Biomass

Solar CHP

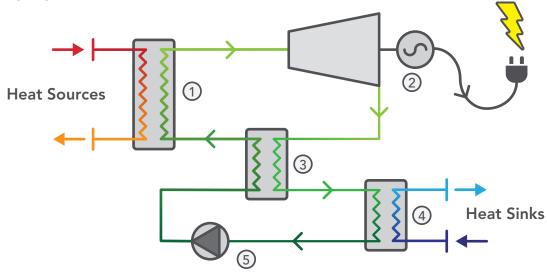
Waste

Geotherm

Heat sinks

Cold Production

Heating



Industrial Processes

Drying

How does it work?

1 Evaporator

A heat exchanger provides heat to the high-pressure working fluid and passes from subcooled liquid to superheated vapor (in the form of water or thermal oil).

2 Turbine

The expansion of the superheated vapor is used to generate clean electricity.

3 Regenerator

The expanded working fluid is used to preheat the high-pressure liquid at the inlet of the evaporator To increase the efficiency of the system.

4 Condenser

The expanded working fluid is used to preheat the high-pressure liquid at the inlet of the evaporator To increase the efficiency of the system.

5 Pump

The pressure of the working fluid is increased, and the ORC cycle is completed.

Rank® Technology

The Rank® equipment is composed of high quality, robust and efficient components, which offer our customers the following advantages and benefits.

Rank® low-rpm turbine

Operation at low revolutions reduces the noise level, lengthens the service life, and improves reliability.

Rank® direct drive

Direct drive avoids the use of gears or pulleys, minimising the maintenance and increasing electrical efficiency.

Zero leaks

Our hermetic components eliminate the leakage of the working fluid, reducing maintenance costs and downtime and being more environmentally friendly.

Rank®

Magnetic transmission

Magnetic transmission to ensure tightness and to reduce the possibility of leakage.

Rank® easy-connect

Electronics-free connection to the electricity grid at the required electrical quality conditions.

Flexible operation

Modular machines that can operate under a wide range of temperature and flow inlet and outlet conditions.

Digitalisation through the Rank® control system

Our machines operate without the need for the human interface through an automatic, efficient managing system.

Safety

It complies with all safety regulations and minimises the risk of accidents.

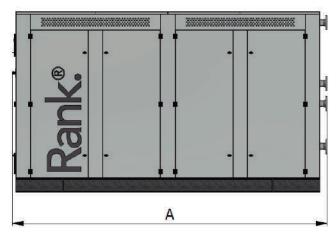
Rank® service

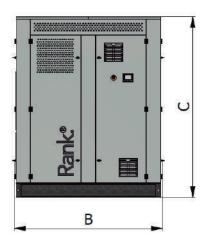
Real-time remote monitoring and predictive control of the machines and automatically generated reports.

Safety Regulations and Standards

- Low voltage Directive
- Machinery Directive
- Electromagnetic Compatibility Directive
- Pressurized Equipment Directive
- ENA ER G59/3

- ASME B31.1 Power Piping Code, Mechanical
- ASME B31.3 Process Piping Code
- ASME Boiler and Pressure Vessel Code Section VIII
- UL 508A- Control Panel Wiring
- EN/ISO 3744:2010


Technical Data


			Heat transfer fluid	Thermal Oil	-
		Heat source	Inlet temperature	180-210	°C
			Outlet temperature	120-150	°C
			Volumetric flow rate	44	m³/h
			Thermal power	1 200-1 600	kWt
			Connections diameter	DN100 PN16	-
			Pressure drop	50	kPa
			Heat transfer fluid inner volume	125	L
			Heat transfer fluid	Water	-
			Inlet temperature	45-65	°C
			Outlet temperature	60-80	°C
		Useful heat	Volumetric flow rate	66	m ³ /h
		Osetui neat	Thermal power	800-1 200	kWt
			Connections diameter	DN150 PN16	-
			Pressure drop	100	kPa
			Heat transfer fluid inner volume	275	L
- <u>-</u> -			Gross power	100-145	kWe
			Net power	80-115	kWe
		Electricity	Voltage	3 x 400	V
		,	Frequency	50	Hz
			Intensity	265	A
			Data Connection	RJ45	
Container transport (optional)				HC 20'	

^{*} The heat transfer fluid can be water, steam, or thermal oil

HC (high cube)

Dimensions

A = 5 800 mm B = 2 250 mm C = 2 500 mm Weight 8 500 kg

Although our staff has made every effort possible to ensure accurate data and close to the final solution, these should be considered indicative and not binding.